# Impact Study of Limited Operation for Generator Interconnection

GEN-2012-037

December 2013 Generator Interconnection Studies



0-0-0

000

# **Executive Summary**

<OMITTED TEXT> (Interconnection Customer; GEN-2012-037) has requested a Limited Operation System Impact Study under the Southwest Power Pool Open Access Transmission Tariff (OATT) for 196 MW (Summer)/203 MW (Winter) of natural gas combustion turbine (NGCT) generation to be interconnected as an Energy Resource (ER) into a transmission facility of Southwestern Public Service Company (SPS) in Hale County, Texas. GEN-2012-037, under GIA Section 5.9, has requested this Limited Operation Interconnection Study (LOIS) to determine the impacts of interconnecting to the transmission system before all required Network Upgrades identified in the DISIS-2012-002 (or most recent iteration) Impact Study can be placed into service. The Point of Interconnection for the GEN-2012-037 Interconnection Request is the TUCO 345kV substation.

The Customer has requested this LOIS to confirm that adequate interconnection service remains prior to completion of the required network upgrade, the TUCO 345/230/13.2kV autotransformer circuit 3, assuming a January 1, 2015, LOIS operation date.

This LOIS addresses the effects of interconnecting the plant to the rest of the transmission system for the system topology and conditions as expected on January 1, 2015 if there is a delay on the TUCO 345/230/13.2kV transformer circuit 3. GEN-2012-037 is requesting the interconnection of one (1) GE 7FA Type NGCT generator and associated facilities rated at 196/203 MW (Summer/Winter) into the existing SPS TUCO 345kV substation. Stability analysis was also performed for this study. The LOIS assumes that only the higher queued projects listed within Table 1 of this study might go into service before the completion of all Network Upgrades identified within Table 2 of this report. If additional generation projects, listed within Table 3, with queue priority equal to or higher than the study project request rights to go into commercial operation before all Network Upgrades identified within Table 2 of this report are completed, this LOIS may need to be restudied to ensure that interconnection service remains for the GEN-2012-037 request.

Power flow analysis from this LOIS has determined that the GEN-2012-037 request can interconnect a limited amount of generation as an Energy Resource prior to the completion of the required Network Upgrades, listed within Table 2 of this report. There is no more than 203 MW of Limited Operation Interconnection Service available. This determination is for the period of January 1, 2015 until the completion of the TUCO 345/230/13.2kV autotransformer circuit 3. This ERIS Network Upgrade has a yet to be determined in service date.

Transient Stability analysis has indicated that the Transmission System will remain stable and all generators will remain on line with the addition of the GEN-2012-037 generator.

Should any other projects, other than those listed within Table 1 of this report, come into service an additional study may be required to determine if any limited operation service is available.

It should be noted that although this study analyzed many of the most probable contingencies, it is not an all-inclusive list and cannot account for every operational situation. Because of this, it is likely that the Customer(s) may be required to reduce their generation output to 0 MW, also

known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of transmission service or delivery rights. If the customer wishes to obtain deliverability to final customers, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

# **Table of Contents**

| Purpose1                            |
|-------------------------------------|
| acilities                           |
| Generating Facility4                |
| Interconnection Facilities4         |
| Base Case Network Upgrades4         |
| Power Flow Analysis                 |
| Model Preparation5                  |
| Study Methodology and Criteria5     |
| Results5                            |
| Curtailment and System Reliability6 |
| Stability Analysis                  |
| Model Preparation8                  |
| Disturbances                        |
| Power Factor Analysis11             |
| Results11                           |
| FERC LVRT Compliance13              |
| Conclusion                          |

# Purpose

<OMITTED TEXT> (Interconnection Customer; GEN-2012-037) has requested a Limited Operation System Impact Study (LOIS) under the Southwest Power Pool (SPP) Open Access Transmission Tariff (OATT) for an interconnection request into an existing transmission facility of Southwestern Public Service Company (SPS).

The Customer has requested this LOIS to confirm that adequate Energy Resource Interconnection Service (ERIS) remains prior to completion of the TUCO 345/230/13.2kV autotransformer circuit 3 required Network Upgrade, assuming a January 1, 2015, LOIS operation date.

Both power flow and transient stability analysis were conducted for this Limited Operation Interconnection Service. Limited Operation Studies are conducted under GIA Section 5.9.

The LOIS considers the Base Case as well as all Generating Facilities (and with respect to (b) below, any identified Network Upgrades associated with such higher queued interconnection) that, on the date the LOIS is commenced:

- a) are directly interconnected to the Transmission System;
- b) are interconnected to Affected Systems and may have an impact on the Interconnection Request;
- c) have a higher queued Interconnection Request to interconnect to the Transmission System listed in Table 1; or
- d) have no Queue Position but have executed an LGIA or requested that an unexecuted LGIA be filed with FERC.

Any changes to these assumptions, for example, one or more of the previously queued requests not included within this study execute an interconnection agreement and commencing commercial operation, may require a re-study of this LOIS at the expense of the Customer.

Nothing within this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer any right to receive transmission service rights. Should the Customer require transmission service, those rights should be requested through SPP's Open Access Same-Time Information System (OASIS).

This LOIS study included prior queued generation interconnection requests. Those listed within Table 1 are the generation interconnection requests that are assumed to have rights to either full or partial interconnection service prior to the requested 1/2015 in-service of GEN-2012-037 for this LOIS. Also listed in Table 1 are both the amount of MWs of interconnection service expected at the effective time of this study and the total MWs requested of interconnection service, the fuel type, the point of interconnection (POI), and the current status of each particular prior queued request.

| Project             | MW    | Total<br>MW | Fuel<br>Source | POI                                         | Status                    |
|---------------------|-------|-------------|----------------|---------------------------------------------|---------------------------|
| ASGI-2010-010       | 42.2  | 33.4        | Wind           | Lovington 115kV                             | Lea County Affected Study |
| ASGI-2010-020       | 30.0  | 24.0        | Wind           | Tap LE-Tatum – LE-Crossroads 69kV           | Lea County Affected Study |
| ASGI-2010-021       | 15.0  | 12.0        | Wind           | Tap LE-Saunders Tap – LE-Anderson 69kV      | Lea County Affected Study |
| ASGI-2011-001       | 28.8  | 23.0        | Wind           | Lovington 115kV                             | COMMERCIAL OPERATION      |
| ASGI-2011-003       | 10.0  | 8.0         | Wind           | Hendricks 115kV                             | COMMERCIAL OPERATION      |
| ASGI-2011-004       | 20.0  | 16.0        | Wind           | Pleasant Hill 69kV                          | COMMERCIAL OPERATION      |
| GEN-2001-033        | 180.0 | 120.0       | Wind           | San Juan Tap 230kV                          | COMMERCIAL OPERATION      |
| GEN-2001-036        | 80.0  | 64.0        | Wind           | Norton 115kV                                | COMMERCIAL OPERATION      |
| GEN-2006-018        | 167.4 | 167.4       | СТ             | TUCO 230kV                                  | COMMERCIAL OPERATION      |
| GEN-2006-026        | 640.0 | 401.0       | СТ             | Hobbs 230kV & Hobbs 115kV                   | COMMERCIAL OPERATION      |
| GEN-2008-022        | 300.0 | 30.0        | Wind           | Tap Eddy Co – Tolk 345kV (Chaves Co Tap)    | IA EXECUTED/ON SCHEDULE   |
| GEN-2010-006        | 205.0 | 205.0       | СТ             | Jones 230kV                                 | COMMERCIAL OPERATION      |
| GEN-2010-046        | 56.0  | 56.0        | СТ             | TUCO 230kV                                  | IA EXECUTED/ON SCHEDULE   |
| GEN-2011-045        | 205.0 | 205.0       | СТ             | Jones 230kV                                 | COMMERCIAL OPERATION      |
| GEN-2011-046        | 27.0  | 27.0        | СТ             | Lopez 115kV                                 | IA EXECUTED/ON SCHEDULE   |
| GEN-2011-048        | 175.0 | 175.0       | СТ             | Mustang 230kV                               | IA EXECUTED/ON SCHEDULE   |
| GEN-2012-001        | 61.2  | 49.0        | Wind           | Tap Grassland – Borden Co (Cirrus Wind Tap) | COMMERCIAL OPERATION      |
| GEN-2012-009        | 15.0  | 15.0        | СТ             | Mustang 230kV                               | FACILITY STUDY            |
| GEN-2012-010        | 15.0  | 15.0        | СТ             | Mustang 230kV                               | FACILITY STUDY            |
| GEN-2012-034        | 7.0   | 7.0         | СТ             | Mustang 230kV                               | IA PENDING                |
| GEN-2012-035        | 7.0   | 7.0         | СТ             | Mustang 230kV                               | IA PENDING                |
| GEN-2012-036        | 7.0   | 7.0         | СТ             | Mustang 230kV                               | IA PENDING                |
| SPS Dist (Hopi)     | 10.0  | 10.0        | Solar          | Hopi 115kV                                  | COMMERCIAL OPERATION      |
| SPS Dist (Jal)      | 10.0  | 10.0        | Solar          | S Jal 115kV                                 | COMMERCIAL OPERATION      |
| SPS Dist (Lea Rd)   | 10.0  | 10.0        | Solar          | Lea Road 115kV                              | COMMERCIAL OPERATION      |
| SPS Dist (Monument) | 10.0  | 10.0        | Solar          | Monument 115kV                              | COMMERCIAL OPERATION      |
| SPS Dist (Ocotillo) | 10.0  | 10.0        | Solar          | Ocotillo 115kV                              | COMMERCIAL OPERATION      |
| GEN-2012-037        | 203.0 | 203.0       | СТ             | TUCO 345kV                                  | IA EXECUTED/ON SCHEDULE   |

| Tabla 1. | Designal | Concertion | Desucate | Indudad  |        |      |
|----------|----------|------------|----------|----------|--------|------|
| able 1:  | Regional | Generation | Requests | inciuaea | within | LUIS |

This LOIS was required because the Customer is requesting interconnection prior to the completion of all of their required upgrades listed within the latest iteration of their Definitive Interconnection System Impact Study (DISIS). Table 2 below lists the required upgrade projects for which this request has or shares cost responsibility. GEN-2012-037 was included within the DISIS-2012-002 that was last restudied in 2013. This report can be located here at the following GI Study URL: http://sppoasis.spp.org/documents/swpp/transmission/GenStudies.cfm?YearType=2012\_Impact\_S tudies.

| Table 2: Network Upgrade Projects not included (unless otherwise noted) |
|-------------------------------------------------------------------------|
| but Required for Full Interconnection Service                           |

| Upgrade Project                           | Туре                   | Status                                                    |
|-------------------------------------------|------------------------|-----------------------------------------------------------|
| TUCO 345/230/13.2kV Transformer circuit 3 | Shared Network Upgrade | NOT IN MODEL                                              |
| Woodward – Border – TUCO 345kV            | Balanced Portfolio     | Current Estimated In-Service<br>Date 5/19/2014 (IN MODEL) |
| TUCO 345/230/13/2kV Transformer circuit 2 | Balanced Portfolio     | Current Estimated In-Service<br>Date 5/19/2014 (IN MODEL) |

| Upgrade Project                                        | Туре                 | Status                                                     |
|--------------------------------------------------------|----------------------|------------------------------------------------------------|
| Hitchland – Beaver Co – Woodward 345kV Double Circuit  | Priority Project     | Current Estimated In-Service<br>Date 6/30/2014 (IN MODEL)  |
| Woodward – Thistle – Wichita 345kV Double Circuit      | Priority Project     | Current Estimated In-Service<br>Date 12/31/2014 (IN MODEL) |
| Woodward – Thistle 345kV Double Circuit                | Priority Project     | Current Estimated In-Service<br>Date 12/31/2014 (IN MODEL) |
| SPS Units Power System Stabilizers (Dynamic Stability) | Previously Allocated | In Service Date TBD<br>(IN DYNAMIC MODEL)                  |

Any changes to these assumptions (for either scenario), for example, one or more of the previously queued requests not included within this study execute an interconnection agreement and commencing commercial operation, may require a re-study of this LOIS at the expense of the Customer. The higher or equally queued projects that were not included in this study are listed in Table 3. While Table 3 is not all inclusive, it is a list of the most probable and affecting prior queued requests that were not included within this LOIS, either because no request for an LOIS has been made or the request is on suspension, etc.

Table 3: Higher or Equally Queued Group 6 (NM and West TX Area)GI Requests not included within LOIS

| Project      | Remainder<br>MW | Total<br>MW | Fuel | POI        | Status     |
|--------------|-----------------|-------------|------|------------|------------|
| GEN-2012-020 | 477.12          | 477.12      | Wind | TUCO 230kV | IA PENDING |

Nothing in this System Impact Study constitutes a request for transmission service or grants the Interconnection Customer any rights to transmission service or deliverability.

# **Generating Facility**

GEN-2012-037 Interconnection Customer's request to interconnect one (1) GE 7FA Type natural gas combustion turbine (NGCT) generator and associated facilities rated at 196/203 MW (Summer/Winter).

# **Interconnection Facilities**

The POI for GEN-2012-037 Interconnection Customer is the SPS TUCO 345kV substation in Hale County, Texas. Figure 1 depicts the one-line diagram of the local transmission system including the POI as well as the power flow model representing the request.



Figure 1: Proposed POI Configuration and Request Power Flow Model

# **Base Case Network Upgrades**

The Network Upgrades included within the cases used for this LOIS study are those facilities that are a part of the SPP Transmission Expansion Plan or the Balanced Portfolio projects that have inservice dates prior to the GEN-2012-037 LOIS requested in-service date of January 1, 2015. These facilities have an approved Notification to Construct (NTC), or are in construction stages and expected to be in-service at the effective time of this study. No other upgrades were included for this LOIS. If for some reason, construction on these projects is delayed or discontinued, a restudy may be needed to determine the interconnection service availability of the Customer.

# **Power Flow Analysis**

Power flow analysis is used to determine if the transmission system can accommodate the injection from the request without violating thermal or voltage transmission planning criteria.

### **Model Preparation**

Power flow analysis was performed using modified versions of the 2013 series of transmission service request study models including the 2014 (spring, summer, and winter) seasonal models. To incorporate the Interconnection Customer's request, a re-dispatch of existing generation within SPP was performed with respect to the amount of the Customer's injection and the interconnecting Balancing Authority. This method allows the request to be studied as an Energy Resource Interconnection Request (ERIS). For this LOIS, only the previous queued requests listed in Table 1 were assumed to be in-service.

## **Study Methodology and Criteria**

The ACCC function of PSS/E is used to simulate contingencies, including single and multiple facility (i.e. breaker-to-breaker, etc.) outages, within all of the control areas of SPP and other control areas external to SPP and the resulting data analyzed. This satisfies the "more probable" contingency testing criteria mandated by NERC and the SPP criteria.

The contingency set includes all SPP control area branches and ties 69kV and above, first tier Non-SPP control area branches and ties 115 kV and above, any defined contingencies for these control areas, and generation unit outages for the SPP control areas with SPP reserve share program redispatch.

The monitor elements include all SPP control area branches, ties, and buses 69 kV and above, and all first tier Non-SPP control area branches and ties 69 kV and above. NERC Power Transfer Distribution Flowgates for SPP and first tier Non-SPP control area are monitored. Additional NERC Flowgates are monitored in second tier or greater Non-SPP control areas. Voltage monitoring was performed for SPP control area buses 69 kV and above.

## Results

Power flow analysis from this LOIS has determined that the GEN-2012-037 request can interconnect a limited amount of generation (203 MW) as an Energy Resource prior to the completion of the required Network Upgrades, listed within Table 2 of this report. Two sets of ACCC results for this LOIS can be found below in Tables 4, and 5. Table 4 contains the results that would require a limitation on the amount operating under LOIS. Under the assumptions defined by this LOIS, there is no more than 203 MW of Limited Operation Interconnection Service available. These determinations are for the period of January 1, 2015 until the completion of the required Network Upgrades listed within Table 2. The TUCO 345/230/13.2kV transformer circuit 3, the ERIS Network Upgrade, has a yet to be determined in service date.

Should any other GI projects, other than those listed within Table 1 of this report, come into service an additional study may be required to determine if any limited operation service is available.

Since ER analysis doesn't provide for transmission reinforcements for issues in which the affecting GI request has less than a 20% TDF, Table 5 is provided for informational purposes only so that the Customer understands there may be times when they may be required to reduce their output to maintain system reliability.

# **Curtailment and System Reliability**

In no way does this study guarantee limited operation for all periods of time. It should be noted that although this study analyzed many of the most probable contingencies, it is not an all-inclusive list and cannot account for every operational situation. Because of this, it is likely that the Customer may be required to reduce their generation output to 0 MW under certain system conditions to allow system operators to maintain the reliability of the transmission network.

#### Table 4: LOIS Interconnection Constraints of GEN-2012-037 (203.0 MW)

| Season | Dispatch<br>Group | Flow | Overloaded Element | RATEA<br>(MVA) | RATEB<br>(MVA) | TDF | TC%<br>LOADING | Max MW<br>Interconnection<br>Available | Contingency |
|--------|-------------------|------|--------------------|----------------|----------------|-----|----------------|----------------------------------------|-------------|
|        |                   |      | None               |                |                |     |                | 203                                    |             |

#### Table 5: LOIS Interconnection Constraints of GEN-2012-037 (203.0 MW) NOT CONSIDERED for Mitigation

| Season | Dispatch<br>Group | Flow | Overloaded Element | RATEA<br>(MVA) | RATEB<br>(MVA) | TDF | TC%<br>LOADING | Contingency |
|--------|-------------------|------|--------------------|----------------|----------------|-----|----------------|-------------|
|        |                   |      | None               |                |                |     |                |             |

# Stability Analysis

Transient stability analysis is used to determine if the transmission system can maintain angular stability and ensure bus voltages stay within planning criteria bandwidth during and after a disturbance while considering the addition of a generator interconnection request.

### **Model Preparation**

Transient stability analysis was performed using modified versions of the 2013 series of Model Development Working Group (MDWG) dynamic study models including the 2014 winter and 2015 summer seasonal models. The cases are then adapted to resemble the power flow study cases with regards to prior queued generation requests and topology. Finally the prior queued and study generation dispatched into the SPP footprint. Initial simulations are then carried out for a nodisturbance run of twenty (20) seconds to verify the numerical stability of the model.

### Disturbances

The eighty-two (82) contingencies were identified for use in this study. These faults are listed within Table 6. These contingencies included three-phase faults and single-phase line faults at locations defined by SPP. Single-phase line faults were simulated by applying fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

With exception to transformers, the typical sequence of events for a three-phase and single-phase fault is as follows:

- 1. apply fault at particular location
- 2. continue fault for five (5) cycles, clear the fault by tripping the faulted facility
- 3. after an additional twenty (20) cycles, re-close the previous facility back into the fault
- 4. continue fault for five (5) additional cycles
- 5. trip the faulted facility and remove the fault

Transformer faults are typically only performed for three-phase faults, unless otherwise noted. Additionally the sequence of events for a transformer is to 1) apply a three-phase fault for five (5) cycles and 2) clear the fault by tripping the affected transformer facility. Unless otherwise noted there will be no re-closing into a transformer fault.

|   | Contingency<br>Number and Name    | Description                                                                |
|---|-----------------------------------|----------------------------------------------------------------------------|
| 1 | FLT_01_TUCOINT7_OKU7_345kV_3PH    | 3-Phase fault on the Oklaunion – Tuco 345kV CKT 1 near the Tuco 345kV bus. |
| 2 | FLT_02_TUCOINT7_OKU7_345kV_1PH    | Single-phase fault similar to previous fault.                              |
| 3 | FLT_03_TUCOINT7_BORDER7_345kV_3PH | 3-Phase fault on the Border – Tuco 345kV CKT 1 near the Tuco 345kV bus.    |

#### Table 6: Contingencies Evaluated for Limited Operation of GEN-2012-037

|    | Contingency                            | Description                                                                        |
|----|----------------------------------------|------------------------------------------------------------------------------------|
|    | Number and Name                        | beschption                                                                         |
| 4  | FLT_04_TUCOINT7_BORDER7_345kV_1PH      | Single-phase fault similar to previous fault.                                      |
| 5  | FLT_07_LES7_SUNNYSD7_345kV_3PH         | 3-Phase fault on the Lawton East Side – Sunnyside 345kV CKT                        |
| 5  |                                        | 1 near the Lawton East Side 345kV bus.                                             |
| 6  | FLT_08_LES7_SUNNYSD7_345kV_1PH         | Single-phase fault similar to previous fault.                                      |
| 7  | FLT_09_LES7_GRACMNT7_345kV_3PH         | 3-Phase fault on the Gracemont – Lawton East Side 345kV                            |
| '  |                                        | CKT 1 near the Lawton East Side 345kV bus.                                         |
| 8  | FLT_10_LES7_GRACMNT7_345kV_1PH         | Single-phase fault similar to previous fault.                                      |
| 9  | FLT_11_BORDER7_WWRDEHV7_345kV_3PH      | 3-Phase fault on the Border – Woodward 345kV CKT 1 near                            |
| 10 | FLT 12 BORDER7 WWRDEHV7 345kV 1PH      | Single-phase fault similar to previous fault                                       |
| 10 | FLT_13_WWRDEHV7_G11051TAP_345kV_3PH    | 2-Dhase fault on the GEN-2011-051-Tan - Woodward 245kV                             |
| 11 |                                        | CKT 1 near the Woodward 345kV bus.                                                 |
| 12 | FLT_14_WWRDEHV7_G11051TAP_345kV_1PH    | Single-phase fault similar to previous fault.                                      |
| 12 | FLT_15_WWRDEHV7_G12016TAP_345kV_3PH    | 3-Phase fault on the GEN-2012-016-Tap – Woodward 345kV                             |
| 15 |                                        | CKT 1 near the Woodward 345kV bus.                                                 |
| 14 | FLT_16_WWRDEHV7_G12016TAP_345kV_1PH    | Single-phase fault similar to previous fault.                                      |
| 15 | FLT_17_WWRDEHV7_BEAVERCO_345kV_3PH     | 3-Phase fault on the Beaver County – Woodward 345kV CKT 1                          |
| 13 |                                        | near the Woodward 345kV bus.                                                       |
| 16 | FLT_18_WWRDEHV7_BEAVERCO_345kV_1PH     | Single-phase fault similar to previous fault.                                      |
| 17 | FLT_19_TUCOINT6_SWISHER6_230kV_3PH     | 3-Phase fault on the Swisher – Tuco 230kV CKT 1 near the                           |
| 17 |                                        | Tuco 230kV bus.                                                                    |
| 18 | FLT_20_TUCOINT6_SWISHER6_230kV_1PH     | Single-phase fault similar to previous fault.                                      |
| 19 | FLT_21_TUCOINT6_TOLKEAST6_230kV_3PH    | 3-Phase fault on the Tolk East – Tuco 230kV CKT 1 near the                         |
| 19 |                                        | Tuco 230kV bus.                                                                    |
| 20 | FLT_22_TUCOINT6_TOLKEAST6_230kV_1PH    | Single-phase fault similar to previous fault.                                      |
| 21 | FLT_23_TUCOINT6_CARLISLE6_230kV_3PH    | 3-Phase fault on the Carlisle – Tuco 230kV CKT 1 near the                          |
|    |                                        | Tuco 230kV bus.                                                                    |
| 22 | FLT_24_TUCOINT6_CARLISLE6_230kV_1PH    | Single-phase fault similar to previous fault.                                      |
| 23 | FLT_25_TUCOINT6_JONES6_230kV_3PH       | 3-Phase fault on the Jones – Tuco 230kV CKT 1 near the Tuco                        |
| 24 | FLT 26 TUCOINT6 JONES6 230kV 1PH       | Single-phase fault similar to previous fault                                       |
| 27 | FLT_27_SWISHER6_NEWHART6_230kV_3PH     | 3-Phase fault on the Newhart – Swisher 230 kV CKT 1 near the                       |
| 25 |                                        | Swisher 230kV hus                                                                  |
| 26 | FLT 28 SWISHER6 NEWHART6 230kV 1PH     | Single-phase fault similar to previous fault                                       |
| 20 | FLT_29_SWISHER6_G07048TAP_230kV_3PH    | 3-Phase fault on the GEN-2007-048-Tan – Swisher 230kV CKT                          |
| 27 |                                        | 1 near the Swisher 230kV bus.                                                      |
| 28 | FLT_30_SWISHER6_G07048TAP_230kV_1PH    | Single-phase fault similar to previous fault.                                      |
| 20 | FLT_31_TOLKEAST6_ROSEVELTS6_230kV_3PH  | 3-Phase fault on the Tolk East – Roosevelt 230 kV CKT 1 near                       |
| 23 |                                        | the Tolk East 230kV bus.                                                           |
| 30 | FLT_32_TOLKEAST6_ROSEVELTS6_230KV_IPH  | Single-phase fault similar to previous fault.                                      |
| 31 | FLI_33_TOLKEAST6_PLANTX6_230KV_3PH     | 3-Phase fault on the Plant X – Tolk East 230kV CKT 2 near the Tolk East 230kV bus. |
| 32 | FLT_34_TOLKEAST6_PLANTX6_230kV_1PH     | Single-phase fault similar to previous fault.                                      |
|    | FLT_35_TOLKEAST6_TOLKTAP6_230kV_3PH    | 3-Phase fault on the Tolk East – Tolk Tap 230kV CKT 1 near                         |
| 33 |                                        | the Tolk East 230kV bus.                                                           |
| 34 | FLT_36_TOLKEAST6_TOLKTAP6_230kV_1PH    | Single-phase fault similar to previous fault.                                      |
| 25 | FLT_37_CARLISLE6_LPMILWAKEE6_230kV_3PH | 3-Phase fault on the Carlisle – LP-Milwaukee 230kV CKT 1                           |
| 35 |                                        | near the Carlisle 230kV bus.                                                       |
| 36 | FLT_38_CARLISLE6_LPMILWAKEE6_230kV_1PH | Single-phase fault similar to previous fault.                                      |
| 27 | FLT_39_JONES6_LPHOLLY6_230kV_3PH       | 3-Phase fault on the Jones – LP-Holly 230kV CKT 1 near the                         |
| 37 |                                        | Jones 230kV bus.                                                                   |
| 38 | FLT_40_JONES6_LPHOLLY6_230kV_1PH       | Single-phase fault similar to previous fault.                                      |

|     | Contingency                              | Description                                                                                                       |
|-----|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|     | Number and Name                          | Description                                                                                                       |
| 20  | FLT_41_JONES6_LUBBCKSTH6_230kV_3PH       | 3-Phase fault on the Jones – Lubbock South 230kV CKT 1 near                                                       |
| 39  |                                          | the Jones 230kV bus.                                                                                              |
| 40  | FLT_42_JONES6_LUBBCKSTH6_230kV_1PH       | Single-phase fault similar to previous fault.                                                                     |
| 41  | FLT_43_JONES6_LUBBCKEST6_230kV_3PH       | 3-Phase fault on the Jones – Lubbock East 230kV CKT 1 near                                                        |
| 41  |                                          | the Jones 230kV bus.                                                                                              |
| 42  | FLT_44_JONES6_LUBBCKEST6_230kV_1PH       | Single-phase fault similar to previous fault.                                                                     |
| 12  | FLT_45_JONES6_GRASSLAND6_230kV_3PH       | 3-Phase fault on the Grassland – Jones 230kV CKT 1 near the                                                       |
| 45  |                                          | Jones 230kV bus.                                                                                                  |
| 44  | FLT_46_JONES6_GRASSLAND6_230kV_1PH       | Single-phase fault similar to previous fault.                                                                     |
| 45  | FLT_47_TUCOINT3_HALECNTY3_115kV_3PH      | 3-Phase fault on the Hale County – Tuco 115kV CKT 1 near the                                                      |
| 73  |                                          | Tuco 115kV bus.                                                                                                   |
| 46  | FLT_48_TUCOINT3_HALECNTY3_115kV_1PH      | Single-phase fault similar to previous fault.                                                                     |
| 17  | FLT_49_TUCOINT3_FLOYDCNTY3_115kV_3PH     | 3-Phase fault on the Floyd County – Tuco 115kV CKT 1 near                                                         |
| 47  |                                          | the Tuco 115kV bus.                                                                                               |
| 48  | FLT_50_TUCOINT3_FLOYDCNTY3_115kV_1PH     | Single-phase fault similar to previous fault.                                                                     |
| 10  | FLT_51_TUCOINT3_STANTONW3_115kV_3PH      | 3-Phase fault on the Stanton West – Tuco 115kV CKT 1 near                                                         |
| 49  |                                          | the Tuco 115kV bus.                                                                                               |
| 50  | FLT_52_TUCOINT3_STANTONW3_115kV_1PH      | Single-phase fault similar to previous fault.                                                                     |
| 51  | FLT_53_TUCOINT3_LUBBCKEST3_115kV_3PH     | 3-Phase fault on the Lubbock East – Tuco 115kV CKT 1 near                                                         |
| 51  |                                          | the Tuco 115kV bus.                                                                                               |
| 52  | FLT_54_TUCOINT3_LUBBCKEST3_115kV_1PH     | Single-phase fault similar to previous fault.                                                                     |
| 53  | FLT_55_TUCOINT7_TUCOINT6_345_230kV_3PH   | 3-Phase fault on the Tuco 345/230kV transformer CKT 1 near                                                        |
| 55  |                                          | the Tuco 345kV bus.                                                                                               |
| 54  | FLT_56_WWRDEHV7_WWRDEHV4_345_138kV_3PH   | 3-Phase fault on the Woodward 345/138kV transformer CKT 1                                                         |
| 51  |                                          | near the Woodward 345kV bus.                                                                                      |
| 55  | FLT_57_LES7_LES4_345_138kV_3PH           | 3-Phase fault on the Lawton East Side 345/138kV transformer                                                       |
|     |                                          | CKT 1 near the Lawton East Side 345kV bus.                                                                        |
| 56  | FLT_58_TUCOINT6_TUCOINT3_230_115kV_3PH   | 3-Phase fault on the Tuco 230/115kV transformer CKT 1 near                                                        |
|     |                                          | the Tuco 115kV bus.                                                                                               |
| 57  | FLT_59_SWISHER6_SWISHER3_230_115kV_3PH   | 3-Phase fault on the Swisher 230/115kV transformer CKT 1                                                          |
|     |                                          | near the Swisher 115kV bus.                                                                                       |
| 58  | FLT_60_CARLISLE6_CARLISLE3_230_115kV_3PH | 3-Phase fault on the Carlisle 230/115kV transformer CKT 1                                                         |
|     |                                          | near the Carlisle 115kV bus.                                                                                      |
| 59  | FLT_61_WWRDEHV7_G12016TAP_DBL_345kV_3PH  | 3-Phase fault on the GEN-2012-016-Tap – Woodward 345kV                                                            |
|     |                                          | CKT 1 & 2 near the Woodward 345kV bus.                                                                            |
| 60  | FLI_62_WWRDEHV7_G120161AP_DBL_345KV_1PH  | Single-phase fault similar to previous fault.                                                                     |
| 61  | FLI_03_WWKDEHV7_BEAVERCO_DBL_345KV_3PH   | 3-Phase fault on the Beaver County – Woodward 345kV CKT 1                                                         |
| 62  |                                          | & 2 hear the Woodward 345kV bus.                                                                                  |
| 62  |                                          | Single-phase jault similar to previous fault.                                                                     |
| 63  | FLI_US_IULNVESIU_PLANIA0_UBL_23UKV_3PH   | 3-muse juuit on the Plant $X = 10$ k 230 kV CK1 1 & 2 hear the Talk Most 220 kV bus                               |
| 64  |                                          | TOIK West 230kV bus.                                                                                              |
| 64  |                                          | Single-phase fault similar to previous fault.                                                                     |
| 65  | I TEI_07_JUNESO_LUDDCKSTHO_DBL_230KV_3PH | 5-riuse juuit on the jones - Lubbock South 230kV CKT 1 & 2                                                        |
| 66  |                                          | Tieur the Jones 230kV bus.                                                                                        |
| 00  |                                          | 2 Dhase fault on the Tells Fact - Descended 220 MV CVT 1                                                          |
| 67  |                                          | 5-riuse juuit on the rolk East - Koosevent 230 KV CKT 1 near                                                      |
| 69  | FIT 70 TOLKEASTE ROSEVELTSE 22060 104*   | Single-phase fault similar to provinus fault                                                                      |
| 00  | FIT 71 TOLKEASTE DIANTYE 220KV 20H*      | Single-phase judit similar to previous judit.<br>2. Dhase fault on the Diant $Y = Talk East 220kV CVT 2 near the$ |
| 69  |                                          | Tolk East 230kV hus No reclose                                                                                    |
| 70  | ELT 72 TOLKEASTE PLANTYE 22041/ 104*     | Single phase fault similar to providus fault                                                                      |
| 1,0 |                                          | Jungie-phase juan sinniar to previous juan.                                                                       |

| Contingency<br>Number and Name |                                         | Description                                                                                     |  |
|--------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|--|
| 71                             | FLT_73_TOLKEAST6_TOLKTAP6_230kV_3PH*    | 3-Phase fault on the Tolk East – Tolk Tap 230kV CKT 1 near the Tolk East 230kV bus. No reclose. |  |
| 72                             | FLT_74_TOLKEAST6_TOLKTAP6_230kV_1PH*    | Single-phase fault similar to previous fault.                                                   |  |
| 73                             | FLT_75_JONES6_LPHOLLY6_230kV_3PH*       | 3-Phase fault on the Jones – LP-Holly 230kV CKT 1 near the Jones 230kV bus. No reclose.         |  |
| 74                             | FLT_76_JONES6_LPHOLLY6_230kV_1PH*       | Single-phase fault similar to previous fault.                                                   |  |
| 75                             | FLT_77_JONES6_LUBBCKSTH6_230kV_3PH*     | 3-Phase fault on the Jones – Lubbock South 230kV CKT 1 near the Jones 230kV bus. No reclose.    |  |
| 76                             | FLT_78_JONES6_LUBBCKSTH6_230kV_1PH*     | Single-phase fault similar to previous fault.                                                   |  |
| 77                             | FLT_79_JONES6_LUBBCKEST6_230kV_3PH*     | 3-Phase fault on the Jones – Lubbock East 230kV CKT 1 near the Jones 230kV bus. No reclose.     |  |
| 78                             | FLT_80_JONES6_LUBBCKEST6_230kV_1PH*     | Single-phase fault similar to previous fault.                                                   |  |
| 79                             | FLT_81_JONES6_GRASSLAND6_230kV_3PH*     | 3-Phase fault on the Grassland – Jones 230kV CKT 1 near the Jones 230kV bus. No reclose.        |  |
| 80                             | FLT_82_JONES6_GRASSLAND6_230kV_1PH*     | Single-phase fault similar to previous fault.                                                   |  |
| 81                             | FLT_83_TOLKWEST6_PLANTX6_DBL_230kV_3PH* | 3-Phase fault on the Plant X – Tolk 230kV CKT 1 & 2 near the Tolk West 230kV bus.               |  |
| 82                             | FLT_84_TOLKWEST6_PLANTX6_DBL_230kV_1PH* | Single-phase fault similar to previous fault.                                                   |  |

NOTE: The faults denoted by an asterisk (\*) were adjusted to allow for no re-closing into the fault. Some 230kV faults on these lines have special operating procedures for re-closing into a three-phase fault.

## **Power Factor Analysis**

Power factor analysis or reactor sizing was not performed for this study. Combustion Turbines are required to provide +/- 95% power factor at the point of interconnection.

### Results

Results of the transient stability analysis are summarized within Table 7. These results are valid for Customers interconnecting up to 203.0 MW, including specified reactive equipment. The results indicate that the transmission system remains stable for all contingencies studied. For those faults listed as "Low Voltage Violations," SPP views these violations as being remote from the studied request and not caused by GEN-2012-037. The plots will be made available upon request.

|    | Contingency Number and Name         | 2014WP | 2015SP |
|----|-------------------------------------|--------|--------|
| 1  | FLT_01_TUCOINT7_OKU7_345kV_3PH      | Stable | Stable |
| 2  | FLT_02_TUCOINT7_OKU7_345kV_1PH      | Stable | Stable |
| 3  | FLT_03_TUCOINT7_BORDER7_345kV_3PH   | Stable | Stable |
| 4  | FLT_04_TUCOINT7_BORDER7_345kV_1PH   | Stable | Stable |
| 5  | FLT_07_LES7_SUNNYSD7_345kV_3PH      | Stable | Stable |
| 6  | FLT_08_LES7_SUNNYSD7_345kV_1PH      | Stable | Stable |
| 7  | FLT_09_LES7_GRACMNT7_345kV_3PH      | Stable | Stable |
| 8  | FLT_10_LES7_GRACMNT7_345kV_1PH      | Stable | Stable |
| 9  | FLT_11_BORDER7_WWRDEHV7_345kV_3PH   | Stable | Stable |
| 10 | FLT_12_BORDER7_WWRDEHV7_345kV_1PH   | Stable | Stable |
| 11 | FLT_13_WWRDEHV7_G11051TAP_345kV_3PH | Stable | Stable |
| 12 | FLT_14_WWRDEHV7_G11051TAP_345kV_1PH | Stable | Stable |
| 13 | FLT_15_WWRDEHV7_G12016TAP_345kV_3PH | Stable | Stable |
| 14 | FLT_16_WWRDEHV7_G12016TAP_345kV_1PH | Stable | Stable |
| 15 | FLT_17_WWRDEHV7_BEAVERCO_345kV_3PH  | Stable | Stable |

Table 7: Fault Analysis Results for Limited Operation of GEN-2012-037

|    | Contingency Number and Name              | 2014WP                 | 2015SP                 |
|----|------------------------------------------|------------------------|------------------------|
| 16 | FLT 18 WWRDEHV7 BEAVERCO 345kV 1PH       | Stable                 | Stable                 |
| 17 | FLT_19_TUCOINT6_SWISHER6_230kV_3PH       | Stable                 | Stable                 |
| 18 | FLT_20_TUCOINT6_SWISHER6_230kV_1PH       | Stable                 | Stable                 |
| 19 | FLT_21_TUCOINT6_TOLKEAST6_230kV_3PH      | Stable                 | Stable                 |
| 20 | FLT_22_TUCOINT6_TOLKEAST6_230kV_1PH      | Stable                 | Stable                 |
| 21 | FLT 23 TUCOINT6 CARLISLE6 230kV 3PH      | Stable                 | Stable                 |
| 22 | FLT 24 TUCOINT6 CARLISLE6 230kV 1PH      | Stable                 | Stable                 |
| 23 | FLT 25 TUCOINT6 JONES6 230kV 3PH         | Stable                 | Stable                 |
| 24 | FLT 26 TUCOINT6 JONES6 230kV 1PH         | Stable                 | Stable                 |
| 25 | FLT 27 SWISHER6 NEWHART6 230kV 3PH       | N/A                    | Stable                 |
| 26 | FLT 28 SWISHER6 NEWHART6 230kV 1PH       | N/A                    | Stable                 |
| 27 | FLT_29_SWISHER6_G07048TAP_230kV_3PH      | Stable                 | Stable                 |
| 28 | FLT_30_SWISHER6_G07048TAP_230kV_1PH      | Stable                 | Stable                 |
| 29 | FLT_31_TOLKEAST6_ROSEVELTS6_230kV_3PH    | Low Voltage Violations | Low Voltage Violations |
| 30 | FLT_32_TOLKEAST6_ROSEVELTS6_230kV_1PH    | Stable                 | Stable                 |
| 31 | FLT_33_TOLKEAST6_PLANTX6_230kV_3PH       | Low Voltage Violations | Low Voltage Violations |
| 32 | FLT_34_TOLKEAST6_PLANTX6_230kV_1PH       | Stable                 | Stable                 |
| 33 | FLT_35_TOLKEAST6_TOLKTAP6_230kV_3PH      | Low Voltage Violations | Low Voltage Violations |
| 34 | FLT_36_TOLKEAST6_TOLKTAP6_230kV_1PH      | Stable                 | Stable                 |
| 35 | FLT_37_CARLISLE6_LPMILWAKEE6_230kV_3PH   | Stable                 | Stable                 |
| 36 | FLT_38_CARLISLE6_LPMILWAKEE6_230kV_1PH   | Stable                 | Stable                 |
| 37 | FLT_39_JONES6_LPHOLLY6_230kV_3PH         | Stable                 | Stable                 |
| 38 | FLT_40_JONES6_LPHOLLY6_230kV_1PH         | Stable                 | Stable                 |
| 39 | FLT_41_JONES6_LUBBCKSTH6_230kV_3PH       | Stable                 | Stable                 |
| 40 | FLT_42_JONES6_LUBBCKSTH6_230kV_1PH       | Stable                 | Stable                 |
| 41 | FLT_43_JONES6_LUBBCKEST6_230kV_3PH       | Stable                 | Stable                 |
| 42 | FLT_44_JONES6_LUBBCKEST6_230kV_1PH       | Stable                 | Stable                 |
| 43 | FLT_45_JONES6_GRASSLAND6_230kV_3PH       | Stable                 | Stable                 |
| 44 | FLT_46_JONES6_GRASSLAND6_230kV_1PH       | Stable                 | Stable                 |
| 45 | FLT_47_TUCOINT3_HALECNTY3_115kV_3PH      | Stable                 | Stable                 |
| 46 | FLT_48_TUCOINT3_HALECNTY3_115kV_1PH      | Stable                 | Stable                 |
| 47 | FLT_49_TUCOINT3_FLOYDCNTY3_115kV_3PH     | Stable                 | Stable                 |
| 48 | FLT_50_TUCOINT3_FLOYDCNTY3_115kV_1PH     | Stable                 | Stable                 |
| 49 | FLT_51_TUCOINT3_STANTONW3_115kV_3PH      | Stable                 | Stable                 |
| 50 | FLT_52_TUCOINT3_STANTONW3_115kV_1PH      | Stable                 | Stable                 |
| 51 | FLT_53_TUCOINT3_LUBBCKEST3_115kV_3PH     | Stable                 | Stable                 |
| 52 | FLT_54_TUCOINT3_LUBBCKEST3_115kV_1PH     | Stable                 | Stable                 |
| 53 | FLT_55_TUCOINT7_TUCOINT6_345_230kV_3PH   | Stable                 | Stable                 |
| 54 | FLT_56_WWRDEHV7_WWRDEHV4_345_138kV_3PH   | Stable                 | Stable                 |
| 55 | FLT_57_LES7_LES4_345_138kV_3PH           | Stable                 | Stable                 |
| 56 | FLT_58_TUCOINT6_TUCOINT3_230_115kV_3PH   | Stable                 | Stable                 |
| 57 | FLT_59_SWISHER6_SWISHER3_230_115kV_3PH   | Stable                 | Stable                 |
| 58 | FLT_60_CARLISLE6_CARLISLE3_230_115kV_3PH | Stable                 | Stable                 |
| 59 | FLT_61_WWRDEHV7_G12016TAP_DBL_345kV_3PH  | Stable                 | Stable                 |
| 60 | FLT_62_WWRDEHV7_G12016TAP_DBL_345kV_1PH  | Stable                 | Stable                 |
| 61 | FLT_63_WWRDEHV7_BEAVERCO_DBL_345kV_3PH   | Stable                 | Stable                 |
| 62 | FLT_64_WWRDEHV7_BEAVERCO_DBL_345kV_1PH   | Stable                 | Stable                 |
| 63 | FLI_65_TOLKWEST6_PLANTX6_DBL_230kV_3PH   | Low Voltage Violations | Low Voltage Violations |
| 64 | FLT_66_TOLKWEST6_PLANTX6_DBL_230kV_1PH   | Stable                 | Stable                 |
| 65 | FLI_6/_JONES6_LUBBCKSTH6_DBL_230kV_3PH   | Stable                 | Stable                 |
| 66 | FLI_68_JONES6_LUBBCKSTH6_DBL_230kV_1PH   | Stable                 | Stable                 |
| 67 | FLI_69_IOLKEASI6_ROSEVELTS6_230kV_3PH*   | Stable                 | Stable                 |
| 68 | FLI_/U_IOLKEASI6_ROSEVELTS6_230kV_1PH*   | Stable                 | Stable                 |
| 69 | FLI_/1_IOLKEASI6_PLANTX6_230kV_3PH*      | Stable                 | Stable                 |
| 70 | FLI_72_TOLKEAST6_PLANTX6_230KV_1PH*      | Stable                 | Stable                 |
| /1 | FLI_73_TOLKEAST6_TOLKTAP6_230kV_3PH*     | Stable                 | Stable                 |
| 72 | FLI /4 TOLKEAST6 TOLKTAP6 230kV 1PH*     | Stable                 | Stable                 |

|    | Contingency Number and Name             | 2014WP | 2015SP |
|----|-----------------------------------------|--------|--------|
| 73 | FLT_75_JONES6_LPHOLLY6_230kV_3PH*       | Stable | Stable |
| 74 | FLT_76_JONES6_LPHOLLY6_230kV_1PH*       | Stable | Stable |
| 75 | FLT_77_JONES6_LUBBCKSTH6_230kV_3PH*     | Stable | Stable |
| 76 | FLT_78_JONES6_LUBBCKSTH6_230kV_1PH*     | Stable | Stable |
| 77 | FLT_79_JONES6_LUBBCKEST6_230kV_3PH*     | Stable | Stable |
| 78 | FLT_80_JONES6_LUBBCKEST6_230kV_1PH*     | Stable | Stable |
| 79 | FLT_81_JONES6_GRASSLAND6_230kV_3PH*     | Stable | Stable |
| 80 | FLT_82_JONES6_GRASSLAND6_230kV_1PH*     | Stable | Stable |
| 81 | FLT_83_TOLKWEST6_PLANTX6_DBL_230kV_3PH* | Stable | Stable |
| 82 | FLT_84_TOLKWEST6_PLANTX6_DBL_230kV_1PH* | Stable | Stable |

# FERC LVRT Compliance

Natural Gas Combustion Turbines are not subject to FERC Order #661A. No LVRT analysis was performed.

# Conclusion

<OMITTED TEXT> (Interconnection Customer, GEN-2012-037) has requested a Limited Operation System Impact Study under the Southwest Power Pool Open Access Transmission Tariff (OATT) for 196/203 MW (Summer/Winter) of NGCT generation to be interconnected as an Energy Resource (ER) into a transmission facility of SPS in Hale County, Texas. The point of interconnection will be the TUCO 345kV substation. GEN-2012-037, under GIA Section 5.9, has requested this Limited Operation Interconnection Study (LOIS) to determine the impacts of interconnecting to the transmission system before all required Network Upgrades identified in the DISIS-2012-002 (or most recent iteration) Impact Study can be placed into service.

Power flow analysis from this LOIS has determined that the GEN-2012-037 request can interconnect prior to the completion of the required Network Upgrades, listed within Table 2 of this report. <u>There is no more than **203** MW of Limited Operation Interconnection Service available only as an Energy Resource</u> for the period of January 1, 2015 until the completion of the following Network Upgrade:

Energy Resource Interconnection Service (ERIS) Network Upgrades o TUCO 345/230/13.2kV autotransformer circuit 3

After these network upgrades are completed, limited operation may be available until such time that higher queued projects listed in Table 3 come into service.

Transient Stability analysis has indicated that the Transmission System will remain stable and all generators will remain on line with the addition of the GEN-2012-037 generator.

Any changes to these assumptions, for example, one or more of the previously queued requests not included within this study execute an interconnection agreement and commencing commercial operation, may require a re-study of this LOIS at the expense of the Customer.

Nothing in this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer any right to receive transmission service.